rdlogo
Discover the power of Dextrus in your preferred workspace
Choose Another Product
Dextrus Cloud
dextrus-broucher
  • Try your use cases with sample data provided
  • Free trial for 15-days or 120Hrs of VM uptime
  • Contact RightData for any questions
Launch Dextrus Cloud Trial
Request Demo
dextrus-broucher
  • Interactive discovery calls to understand the problem statement.
  • Personalized and tailored demos are presented.
Demo Request
Client’s Private Cloud
dextrus-broucher
  • Dextrus application gets deployed in your own AWS private cloud
  • Try your use cases with your own data
  • Contact RightData for any questions
Coming Soon...
dextrus-broucher
dextrus-background
Discover RDt’s power in your preferred workspace
Choose Another Product
RDt Cloud
dextrus-broucher
  • Try your use cases with sample data sources. Check out the pre-configured examples of typical use cases.
  • Free trial for 15-days.
  • Contact RightData for any questions
Launch RDt Cloud Trial
Client’s Private Cloud
dextrus-broucher
  • RDt application gets deployed in your own private cloud.
  • Try your use cases with your own data
  • Contact RightData for any questions
Launch RDt on Client Cloud
Request Demo
dextrus-broucher
  • Interactive discovery calls to understand the problem statement
  • Personalized and tailored demos are presented
Demo Request
dextrus-broucher
dextrus-broucher
Click on the best RightData product
that matches your needs.
Dextrus is a purpose-built cloud powered Self-service, Data integration and Data science solution, for all data practitioners.
TRY DEXTRUS NOW
RightData product is a no-code data testing, reconciliation and validation suite.
TRY RDt NOW
dextrus-broucher
dextrus-background
Great choice!
Select the platform to try Dextrus
dextrus-background
Coming Soon...
dextrus-background
Coming Soon...
dextrus-broucher
dextrus-background
Great choice!
Select the platform to try RDt
dextrus-background
Coming Soon...
dextrus-broucher
dextrus-background
Resources
rightarrow
RDt blogs
RDt blogs
rightarrow
The Beginner’s Guide to Data Observability

The Beginner’s Guide to Data Observability

December 21, 2022
solution-sepreator
The Beginner's Guide to Data Observability

It comes down to trust. Organizations depend on accurate data to keep key operations running smoothly and inform critical business decisions. As data changes and issues arise, the trust and confidence for accurate data can suffer, so taking a proactive approach is important to empower effective business decision-making.
This post will explain the growing practice of Data Observability and how you can use foundational techniques and tools to ensure trustable data throughout your enterprise or IT operation. This approach provides impact as well in the data governance area with policy, business, and technical payoffs as data grows within an organization. It will also discuss key features to look for in Data Observability tools to help you find the right solution for your system.

What Is Data Observability?

One view of Data Observability on a holistic basis is to increase visibility and monitoring across the data workflow — from ingest to transformation to consumption. Both data governance managers and data scientists can observe and monitor the state and quality of their data at all levels. But there is more to consider in improving dynamic trust along the way.

Website

Description automatically generated

Another deeper view of Data Observability is similar to the DevOps concept of software Observability for processes that prevent data downtime. The key aspects of ensuring better data include:

This enables DataOps and DevOps teams to use a continuous integration and development (CI/CD) approach to data and software engineering and provide a Return on Investment (ROI) to the cost of doing so. The payoff has deep impact, and the tools can often automate each step through machine learning to discover and assess data problems that may otherwise remain hidden. 

Graphical user interface, website

Description automatically generated

The 5 Pillars of Data Observability

Five principal areas of Data Observability form the framework of advanced data monitoring and mitigation of data downtime that work for both data governance and data engineering teams. Addressing each of these Data Observability pillars is critical to understanding and maintaining the health of enterprise data systems — let us take a look.

The practical implementation of Data Observability is that your organization is running an efficient operation where data can be trusted. In addition, to create an ROI on the cost of the people and time to maintain this trust, the pillars also provide metrics for Data Observability performance, essential to gain an accurate vision of your organization's data at any time.

For example, a full view of data lineage is important for understanding dependencies between pieces of data within your system. Without that lineage, you will have an incomplete picture of how data issues can relate to each other, which can make resolving data quality issues much more difficult. A Data Observability solution incorporates this necessity and ensures data traceability both upstream and downstream.

Graphical user interface, application

Description automatically generated

Beyond the Data Observability Framework

Data Observability goes beyond simply testing and monitoring. It is the framework that makes all of these concepts possible and lets you trust fully in your organization's data.

Beyond the framework of Data Observability, there are pragmatic implementations that comprise the day-to-day operations of an effective data trust team. Let us review a few key areas.

Monitoring

Many people use the terms, “Data Observability” and “monitoring” interchangeably, but the difference revolves around what more you must do beyond monitoring, by alerting the data team on important data quality areas to be addressed — again, all to ensure trust in data.

Monitoring issues alerts based on pre-defined parameters, which represent data in aggregates and averages. Complete visibility into your data assets and attributes is necessary for successfully monitoring the health of your data ecosystem. There are two types of data quality issues:

Before you can successfully establish a monitoring scheme for a data ecosystem, you need to have full visibility into all your data assets, as well as the workflow and business rules that manage them across the pipeline and storage systems. In addition, Data Observability can help you provide visibility into “unknown unknowns,” letting you gain a complete understanding of your data assets and attributes.

Monitoring is also a key feature of Data Observability tools — with a monitoring dashboard, you can get a high-level view of your entire pipeline or data system at a glance. A user-friendly dashboard is a quick and effortless way to provide comprehensive data to anyone in your organization, from your data engineers to your business executives.

Testing 

Data engineers utilize routine testing to detect and prevent potential data issues all the way from ingest to downstream consumption. However, with the sheer volume of data modern companies ingest on a daily basis, traditional testing methods are insufficient for identifying a single point of failure.

As with monitoring, unknown unknowns can be problematic for data testing. Utilizing Data Observability at scale can address the gaps caused by unknown unknowns that may be impossible to resolve through other tests. Essentially, Observability of data is more effective than data testing alone because:

Data Quality and Reliability

Data reliability and quality are critical for making data-driven business decisions. Reliable data eliminates the guesswork involved in making trustworthy analyses and insights, which is why it is one of the most important characteristics of healthy data.

Bad data causes data downtime, which is incredibly damaging to business operations. However, this simplistic understanding can limit data teams in their ability to evaluate data reliability and quality.

Data health is measured, often as a percentage of how good my data is — 60%, 70%, 80% — and then using strategies to increase the value and trust of the data sets based on countless needs. So, Data Observability can facilitate data quality by enabling data teams to examine the big picture in addition to what is already in their silo. 

There are six key dimensions to data quality — beyond this blog — but to indicate they are based upon uniqueness, accuracy, completeness, timeliness, validity, and consistency. Because Data Observability works in conjunction with data quality, it is important that organizations improve every aspect of their data to ensure high quality and reduce data downtime.

Data Governance

Data Observability is critical to establishing a data governance framework, a key part of creating a truly data-driven organization. The four pillars of data governance include:

Without Data Observability, it is difficult to get a data governance framework up and running, especially if you plan to implement complex applications in the future. 

Key Features of a Data Observability Tool

The following features are critical to achieving Data Observability:

At the end of the day, an effective Data Observability software suite will integrate into your existing modern data workflow with minimal need for manual configurations. It should also utilize machine learning to automatically map your environment and data, providing a holistic view of your data and the potential impact it may experience from specific issues.

Graphical user interface, application

Description automatically generated

Why Is Data Observability Important?

As businesses across various industries continue to work towards digital transformation, their data becomes increasingly important in their day-to-day operations. These data ecosystems consequently increase in complexity — and so do the risks of data quality issues that could cause costly business mistakes. 

Data Observability lets you thoroughly understand your organization's data pipelines so you can troubleshoot data problems in almost any scenario, even in highly complex systems. When you pair a practical data strategy with effective Observability tools, you can even prevent many of these issues from arising in the first place.

Essentially, Data Observability increases organizational confidence in your data's accuracy so you can make well-informed business decisions and maintain the trust your customers have placed in you.

Why Observability Is Crucial for Both DataOps and DevOps Teams

The main issue for data organizations is that they lack true visibility into their data, which can negatively impact important business decisions.

For example, data silos make exploratory data analysis (EDA) incredibly difficult by interfering with your team's ability to create complete visual representations such as graphs and charts, which are essential to gathering quality insights. 

Data Observability makes EDA possible by broadening the scope of what your data teams can see — with a complete view of data across your organization, DevOps and DataOps teams can put their data in context, leading to more informed business processes. 

Graphical user interface, text, website

Description automatically generated

Why Do Data Organizations Need Data Observability?

All organizations need standardized, readily available data to keep key business processes running smoothly. Data Observability lets organizations discover and address data issues in real-time, preventing these problems from traveling further down the pipeline and affecting business processes. The process of data validation manages a source to target confidence.

Data-intensive applications rely on accurate, high-quality data to function properly. For example, machine learning is a highly data-intensive application that relies on AI Observability to keep stakeholders updated on the health and quality of the system's model, data, and predictions. AI Observability relies on end-to-end Data Observability to work properly because it enables visibility into every stage of the data pipeline, helping uncover common ML problems like stale models, data drift, and changes in data quality.

While a pure monitoring system is limited to checking for your known unknowns, a Data Observability software suite prepares you for unexpected abnormalities. This ability helps data teams meet rigorous SLAs.

How Does Data Downtime Affect Organizations?

Data downtime refers to periods of incompleteness and inaccuracy in your data. Many factors, such as bug fixes or sudden schema changes, can cause data downtime. 

These periods can be detrimental to your organization. According to the ITIC annual Hourly Cost of Downtime Survey for 2021, 44% of enterprise organizations estimate that every hour of data downtime costs them more than $1 million.

The extent of data downtime is directly related to the complexity of your overall data system — as your organization grows and adds more applications, data downtime is likely to occur more frequently. However, because data teams often approach data quality and lineage issues as they arise, data downtime remains problematic. 

Data Observability provides the visibility you need to catch data issues early, letting you minimize data downtime and resolve the problem's root cause before it causes further issues. In other words, Data Observability is an investment that both keeps your data up and running in the present and prevents issues from occurring in the future.

What Is the Process of Implementing a Data Observability Platform?

A unified Data Observability software suite is an essential way to achieve full data trust in your organization, but you need to build the proper infrastructure before you can begin using it. A sound framework is key for adding this technology to your current stack.

The following three components are absolutely necessary for developing a solid Data Observability framework:

By following these steps, you create an environment that can support your chosen Observability platform. 

Diagram

Description automatically generated

How RightData Supports Data Observability Efforts

If you are looking for a software suite that can make Data Observability more attainable for your organization, RightData's RDt software is for you.

RDt is a scalable, efficient software suite that lets you and your stakeholders identify and solve data quality issues. RDt automates and expands the internal data auditing process, increasing confidence in your organization's readiness for external audits. 

With RDt, you can uncover issues early on in data production — this proactive approach helps you prevent compliance issues and reputational damages, thus minimizing financial risk. Plus, by accelerating these test cycles and facilitating CI/CD processes, RDt reduces the cost of delivery.

Some other key features include:

In addition, RightData's modern data integration platform, called Dextrus, the data quality and Observability features work completely with an entire workflow. You can complete your data pipeline with Dextrus, our comprehensive, high-performance data platform. Dextrus lets you build both batch and real-time streaming data pipelines in just minutes — plus, it integrates the analytics into the ETL pipeline building phase, letting you analyze data at any stage of integration. 

With Dextrus, you can create and maintain an accessible cloud data repository for both cold and warm data to fulfill any of your organization's data analytics needs. 

Noteworthy Dextrus features include:

Combining RDt and Dextrus lets you harness the power of big data by enhancing organization-wide visibility into your pipeline. Build an efficient pipeline using Dextrus and test it for faulty data using RDt — the solution could not be simpler. 

Graphical user interface

Description automatically generated

Make a Difference in Data Observability With RightData

At RightData, we strive to help data engineers improve their organization's data strategies by providing high-quality tools for gaining better insights into critical business data. 

In addition, we recognize the evolving role of data governance professionals who bridge data quality with the pillars of Data Observability for impact on data trust across the enterprise. Their role is critical to success because policy, technology, and business decision-making all must work together. If you are looking for a DataOps platform that covers the entire data pipeline process from creation to testing, we are here to help.  to schedule a live RDt demo. One of our expert team members will get back to you as soon as possible.